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TABLE III
SIMULATION ERRORS FOR THE SILVERBOX DATA, OVER THE FULL TEST SET

(CASE I) AND ONLY FOR THE LAST 10 000 POINTS OF THE TEST SET (CASE II)

mean squared error decreases to 2:7� 10�4. Moreover, when consid-
ering only the last 10 000 points of the test data, the improvement is
more important, as shown in Table III. Using the full black-box model,
the maximum absolute error is 0.0081, which is reduced to 0.0037 with
the PL-LSSVM. The mean absolute error for the full black-box model
is 2:3 � 10�4; for the partially linear model, it is 2:02 � 10�4. The
effective number of parameters is reduced from 490 to 190.

V. CONCLUSION

In this note, we illustrated that it is possible to use a partially linear
model with least squares support vector machines to successfully iden-
tify a model containing a linear part and a nonlinear component, with
better performance results than a full nonlinear black-box model. The
structured model may show a better generalization ability, and a re-
duced effective number of parameters, than a full nonlinear black-box
model. In the real-life example of the Silverbox benchmark data, an ex-
isting nonlinear black-box model can be further improved by imposing
a linear structure, as it is illustrated in the simulation performance.
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Model Quality in Identification of Nonlinear Systems

Mario Milanese and Carlo Novara

Abstract—In this note, the problem of the quality of identified models
of nonlinear systems, measured by the errors in simulating the system
behavior for future inputs, is investigated. Models identified by classical
methods minimizing the prediction error, do not necessary give “small”
simulation error on future inputs and even boundedness of this error is
not guaranteed. In order to investigate the simulation error boundedness
(SEB) property of identified models, a Nonlinear Set Membership (NSM)
method recently proposed by the authors is taken, assuming that the
nonlinear regression function, representing the difference between the
system to be identified and a linear approximation, has gradient norm
bounded by a constant . Moreover, the noise sequence is assumed
unknown but bounded by a constant . The NSM method allows to obtain
validation conditions, useful to derive “validated regions” within which to
suitably choose the bounding constants and . Moreover, the method
allows to derive an “ optimal” estimate of the true system. If the chosen
linear approximation is asymptotically stable (a necessary condition for
the SEB property), in the present note a sufficient condition on is
derived, guaranteeing that the identified optimal NSM model has the
SEB property. If values of in the validated region exist, satisfying the
sufficient condition, the previous results can be used to give guidelines
for choosing the bounding constants and , additional to the ones
required for assumptions validation and useful for obtaining models
with “low” simulation errors. The numerical example, representing a
mass-spring-damper system with nonlinear damper and input saturation,
demonstrates the effectiveness of the presented approach.

Index Terms—Identification, nonlinear systems, Set Membership, simu-
lation error, stability.

I. INTRODUCTION

Consider a nonlinear dynamic system of the form

yt+1 = fo(wt) = fo(xt; vt) (1)

where: wt = (xt; vt); xt = [yt . . . yt�n+1]
T ; vt =

[u1t . . .u
1
t�n +1 . . .u

q
t . . .u

q
t�n +1]

T ; yt; u
1
t ; . . . ; u

q
t 2 ;m =

n + nu; nu = q

i=1
ni; fo : m

! , and t = 0; 1; 2; . . ..
Suppose that the function fo is not known, but a set of noise cor-

rupted measurements yt and vt, of yt and vt; t = 0; 1; 2; . . . ; T is
available. Then, the aim is to find an estimate f of fo such that the
simulation error for future input sequence is “small.”

Most of identification methods in the literature (see, e.g., [1]–[4])
consider that fo belongs to a finitely parametrized set of functions
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K
:
= ffp('); p 2 r; ' 2 mg and measured data are used to

derive an estimate p of p, leading to an estimate f = f
p
. The esti-

mate p of p is usually obtained by minimizing an error function p =
argminp V (p;�T ); V (p;�T ) =

T�1
t=0 jyt+1 � fp('t)j

l, where 't
is a regression vector and�T = ['0; '1; . . . ; 'T ]. Several choices can
be taken for the regressor 't. Widely used are the following ones:

't = wt = [yt � � � yt�n+1 vt]
T

't = wt = [fp(wt�1) � � � fp(wt�n) vt]
T

leading to NARX and NOEmodels, respectively (see, e.g., [2] and [5]).
Such an approach is often indicated as prediction error (PE) method,

since V (p;�T ) is an estimate of the prediction error for the given re-
gressor choice. A basic problem is that an estimated model f giving
low prediction error, does not necessary give low simulation errors on
future inputs (see, e.g., [2]). Indeed, even boundedness of the simula-
tion error of f is not guaranteed. The problem arises even in the iden-
tification of linear systems. In fact, the PE estimate of a linear asymp-
totically stable system may result to be not asymptotically stable, in
which case the simulation error is generally unbounded. If in the linear
case it can be anyway a posteriori detected if the estimated model f is
not guaranteed to have bounded simulation errors, the problem is more
difficult in the nonlinear case. In order to formulate more precisely
the simulation error boundedness (SEB) problem investigated in this
note, let yt(f; x0; v); t = 0; 1; 2; . . . be the solution of system yt+1 =
f(xt; vt), corresponding to initial condition x0 = [y0 . . . y

�n+1]
T

and input sequence v = [v0; v1; v2; . . .]. For given initial condition x0
and input sequence v, the simulation error at time t of the identified
model f is given by

SEt(fo; f)
:
= yt(fo; x0; v)� yt(f; x0; v)

where x0 = [y0 � � � y�n+1]
T . Following a similar definition in [6], we

say that model f simulates system fo on the setsK1; K2 in time T and
up to accuracy � if for each x0 2 K1 and v 2 K2 it results

jSEt(fo; f)j � �; t = 0; 1; 2; . . . ; T : (2)

Some results are available showing that choosing a neural net as pa-
rametrized function fp('); p 2 r with sufficiently large r, a f exists
which simulates system fo up to any given accuracy � on compact sets
K1; K2, in any finite time T for which the solutions of (1) exist [6],
[7], and in infinite time in case of fading memory systems [8]. How-
ever, in practical applications it is important to evaluate if the actually
identified model f (obtained by the chosen identification method op-
erating on the available noise corrupted data) simulates system fo up
to finite accuracy on some setsK1; K2 in infinite time. In such a case,
we say that the identified f has the SEB property. To our knowledge,
no results exist on this SEB problem for the identified model.

In this note, we investigate the SEB problem using the Nonlinear Set
Membership (NSM) method for the identification of nonlinear system
developed in [9]. In that paper it is shown how to find an “optimal” esti-
mate fc of fo from input–output data corrupted by bounded noise, not
assuming a functional parametric form for fo, but assuming a bound
on fo gradient norm. A validation result is given, used to derive “val-
idated regions” within which to suitably choose the bounds on noise
and on fo gradient norm. A quantity rI , called radius of information, is
also derived, giving the worst-caseLp identification error kfc(xt; vt)�
fo(xt; vt)kp, for all wt = (xt; vt) in a domain of interest W . In this
note, a particular case is considered of the so called local approach,
which consists in considering a function fa approximating fo and on
the application of the method described in [9] to the residue function
f�(w)

:
= fo(w)� fa(w). A linear approximation is considered here

and, assuming that the approximating linear model is asymptotically
stable (a necessary condition for obtaining the SEB property) a condi-
tion is given guaranteeing that, for all initial conditions xo and input

sequences vt giving solutions of (1) in the domain W , the simulation
error can be bounded as a function of rI . The condition involves the
bound on the residual function f� gradient norm, so that selecting the
bounds in the validated region and satisfying the previous condition,
the resulting optimal NSM model fc has the SEB property.

The note is organized as follows. In Section II, the NSM identifi-
cation method is summarized. In Section III, sufficient conditions for
NSM models stability and simulation error boundedness are given of
the optimal NSM model fc. In Section IV, a numerical example is
shown in order to demonstrate the effectiveness of the presented theo-
retical results.

II. NSM IDENTIFICATION

In this section, the concepts and results of the NSM methodology
developed in [9], needed for the development of the present note,
are briefly recalled. Consider that a set of noise corrupted data
YT = [y0; y1; . . . ; yT ] and WT = [w0; w1; . . . ; wT ] generated by (1)
is available. Then

~yt+1 = fo (wt) + et; t = 0; 1; . . . ; T � 1

where the term et accounts for the fact yt+1 and wt are not exactly
known. The aim is to obtain an estimate f of fo, possibly giving small
identification error kf � fokp, where k � kp is a Lp norm, jjf jjp

:
=

[
W
jf(w)jpdw]1=p; p 2 [1;1); kfk1

:
= ess� supw2W jf(w)j and

W is a bounded subset of m. It must be noted that no finite bound
on the identification error can be guaranteed, unless some assumptions
are made on the function fo and the noise sequence e. Indeed, it is
well known that determining a model from a finite set of data without
any prior knowledge about the system is an ill-posed problem, in the
sense that a unique model may not exist, or it may not depend con-
tinuously on data [10]. The typical approach in the literature is to as-
sume a given parametric form for fo (linear, bilinear, neural networks,
etc.) and statistical models on the noise sequences. In the Nonlinear Set
Membership approach presented in [9], the gradient of fo and noise
sequences are supposed to be bounded. Here, a particular case is con-
sidered of the so called local approach, which consists in the evalu-
ation of a function fa approximating fo (using any desired method,
e.g., PE method) and on the application of the method described in [9]
to the residue function f�(w)

:
= fo(w) � fa(w) with the assump-

tion that kf 0�(w)k � , where f 0�(w) denotes the gradient of f�(w).
This is equivalent to the locally varying (in the regressor space) bound
kf 0a(w)k�  � kf 0o(w)k � kf 0a(w)k+  for the gradient of function
fo. For a more detailed discussion on the advantages of using such a
local NSM approach, see [9].

In this note we consider the case that fa is a linear approximation of
fo(w), i.e., fa(w) = �Tw (see, e.g., [11] and [12] for methods to es-
timate linear models of nonlinear systems) and we make the following
assumptions.

1) Assumptions on f�(w):

f� 2 K
L :
= fg 2 C

1(W ); kg0(w)k � ; 8w 2Wg

2) Assumptions on Noise:

jetj � "t; t = 0; 1; . . . ; T:

Akey role in SetMembership identification is played by the Feasible
Systems Set, often indicated as “unfalsified functions set,” i.e., the set
of all functions consistent with prior information and measured data.

Definition 1: Feasible Systems Set

FSST
:
= ff : f(w) = �

T
w + g(w); g 2 K

L
;

j~yt+1 � f(wt)j � "t; t = 0; 1; . . . ; T � 1g:
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The Feasible Systems Set FSST summarizes all the available infor-
mation (measured data and prior information on fo and noise e). If
prior assumptions are “true,” then fo 2 FSST , an important property
in view of subsequent use for prediction. As required in any identifica-
tion theory, the problem of checking the validity of prior assumptions
arises. Indeed, the only thing that can be actually done is to check if
prior assumptions are invalidated by data, evaluating if no unfalsified
system exists, i.e., if FSST is empty. However, it is usual to introduce
the concept of prior assumption validation as follows.

Definition 2: Prior assumptions are considered validated if:
FSST 6= ;.

Conditions for prior assumptions validation are given as follows. Let
us introduce the functions

f�(w)
:
= min

t=0;...;T�1
(ht + kw � wtk)

f
�
(w)

:
= max

t=0;...;T�1
(ht � kw � wtk)

ht
:
= yt+1 � �Twt + "t ht

:
= yt+1 � �Twt � "t: (3)

Result 1 [9]:

i) A necessary condition for prior assumptions to be validated
is: f�(wt) � ht; t = 0; 1; . . . ; T � 1.

ii) A sufficient condition for prior assumptions to be validated
is: f�(wt) > ht; t = 0; 1; . . . ; T � 1.

The previous result can be used for choosing values of the bounds
" = ["0 . . . "T ] and  assuring that prior assumptions are not invali-
dated by data. The space ("; ) is divided in two regions. One region
corresponds to values of " and  falsified by data (FSST = ;), the
other corresponds to values of " and  validated by data (FSST 6= ;).
In the space ("; ), the function �(")

:
= infFSS 6=;  individuates a

surface that separate falsified values of " and  from validated ones,
Clearly, " and  must be chosen in the validated parameters region;
see, e.g., Fig. 4 in the example section and [9] for a more detailed dis-
cussion and procedure for such a choice.

An identification algorithm � is an operator mapping all available
information about function fo, noise e, data (YT ;WT ) until time T ,
summarized by FSST , into an estimate f̂ of fo : �(FSST ) = f̂ ' fo.
The related Lp error is: e(f̂) = e(�(FSST )) = kfo � f̂kp. This
error cannot be exactly computed, since it is only known that fo 2
FSST , but its tightest bound is given by e(f̂) � supf2FSS kf �

f̂kp. This motivates the following definition of the identification error,
often indicated as local worst-case or guaranteed error,and of optimal
algorithm.

Definition 3: The identification error of f̂ = �(FSST ) is: E(f̂)
:
=

supf2FSS kf � f̂kp.
Definition 4: An algorithm �� is called optimal if

E[��(FSST )]
:
= inf

�
E[�(FSST )] = inf

f

sup
f2FSS

kf � f̂kp = rI :

The quantity rI , called (local) radius of information, gives the min-
imal identification error that can be guaranteed by any estimate based
on the available information up to time T .

The following result shows that the algorithm �c(FSST ) = fc,
where

fc(w)
:
= �Tw +

1

2
[f
�
(w) + f�(w)] (4)

and �f� and �f� are defined in (3), is optimal for any Lp norm.

Result 2 [9]: For any Lp(W ) norm, with p 2 [1;1]

i) the identification algorithm �c(FSST ) = fc is optimal;
ii) E(fc) = (1=2)kf� � f

�
kp = rI = inf�E[�(FSST )].

III. BOUNDEDNESS OF THE SIMULATION ERROR

In this section, conditions are derived, assuring that the model fc
identified by optimal algorithm �c has the SEB property, i.e., simulates
fo up to finite accuracy for any initial condition and input sequence
in suitable domains and in infinite time. At first, a stability result for
solutions of the optimal model fc is given. Let

�
:
=

�1 �2 � � � � � � �n�1 �n
1 0 � � � � � � 0 0

0 1 � � � � � � 0 0
...

...
. . .

. . .
...

...
0 0 � � � � � � 0 0

0 0 � � � � � � 1 0

2 Rn�n:

For matrix A, let kAk denote its spectral norm. All the eigenvalues
�i(�) of matrix � are strictly inside the unit circle if and only if the
linear regression model yt+1 = �Twt is asymptotically stable. More-
over, if j�i(�)j < 1;8i, then the spectral norm of the powers of �
is exponentially bounded, i.e., constants L > 0 and maxi j�i(�)j �
� < 1 exist such that

k�tk � L�t 8t � 0: (5)

The following theorem shows that if the linear approximation �Tw
of fo(w) is asymptotically stable and the residue function f�(w)

:
=

fo(w) � �Tw has gradient not “too large,” then the solutions of the
optimal model fc are uniformly exponentially stable.

Theorem 1: Let �i(�) be the eigenvalues of matrix � and L >
0; � < 1 constants such that (5) holds. Assume that

i) j�i(�)j < 1; 8i;
ii)  < (1� �)=L.

Then, for any initial condition xo and input sequence v, the solution
yt(fc; x0; v) is uniformly exponentially stable, i.e.,

jyt(fc; x
0
0; v)� yt(fc; x0; v)j < L�tkx00 � x0k8x

0
0; t

where

� = �+ L < 1:

Proof: Consider the solutions yt(fc; x00; v) and yt(fc; x0; v) of
system (1) with f = fc, corresponding to the same input v and to two
different initial conditions x00 and x0. Let

�yt+1
:
= yt+1(fc; x

0
0; v)� yt+1(fc; x0; v)

= fc(x
0
t; vt)� fc(xt; vt)

where x0t and xt are obtained by iteration of (1) with f = fc, using
input v and starting from initial conditions x00 and x0, respectively.
Defining

f�c(w)
:
=

1

2
[f
�
(w) + f�(w)]

it follows

�yt+1 = fc(x
0
t; vt)� fc(xt; vt) (6)

= �T (x0t � xt) + f�c(x
0
t; vt)� f�c(xt; vt): (7)
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Now, suppose that x0t 6= xt and consider the vector at 2 n

at
:
=

f�c(x
0
t; vt)� f�c(xt; vt)

(kx0t � xtk)2

�[(x0t � xt)1 � � � (x0t � xt)n]
T (8)

where (x0t � xt)i is the ith component of vector (x0t � xt). Then

aTt (x
0
t � xt) =

f�c(x
0
t; vt)� f�c(xt; vt)

kx0t � xtk2

n

i=1

(x0t � xt)
2
i

= f�c(x
0
t; vt)� f�c(xt; vt):

Equation (6) can thus be written as

�yt+1 = (� + at)
T (x0t � xt) = (� + at)

T �xt (9)

where �xt
:
= (x0t � xt) = [�yt . . . �yt�n+1]

T . Equation (9) rep-
resents a linear time-variant system in regression form describing the
time evolution of �yt+1. Consider such system in the state–space form

�xt+1 = (� +At) �xt

�yt = [1 0 � � � 0] �xt

At

:
=

at1 at2 � � � atn
0 0 � � � 0

� � � � � �
. . . � � �

0 0 � � � 0

2 n�n (10)

where ati is the ith component of vector at. If all eigenvalues of matrix
� are strictly inside the unit circle and if kAtk < (1� �)=L;8t, a
linear time-variant system of the form (10) is uniformly exponentially
stable (see, e.g., [13, Th. 24.7]) and

k�xtk � L(�+ L sup
��0

kA�k)
tk�x0k; t = 0; 1; . . . : (11)

From the definition of matrix At, it follows:

kAtk = katk =
jf�c(x

0
t; vt)� f�c(xt; vt)j

kx0t � xtk2

�

n

i=1

(x0t � xt)2i

=
jf�c(x

0
t; vt)� f�c(xt; vt)j

kx0t � xtk
:

On the other hand, in [9] it is shown that function f�c is Lipschitz
continuous with Lipschitz constant , i.e.,

jf�c(x
0; vt)� f�c(x; vt)j

kx0 � xk
�  8x0; x; vt:

Thus, max� kA�k �  and, being  < (1� �)=L by assumption
ii), from (11) it follows:

jyt(fc; x
0
0; v)� yt(fc; x0; v)j = j�ytj � k�xtk

� L(�+ L)tk�x0k; t = 0; 1; . . .

and the claim is proved.
Now, we are in position to prove the main result of the note, showing

that the assumptions of Theorem 1 are sufficient conditions for the op-
timal model fc to have the SEB property.

Theorem 2: Let �i(�) be the eigenvalues of matrix � and L >
0; � < 1 constants such that (5) holds. Assume that

i) j�i(�)j < 1;8i;
ii)  < (1� �)=L.

Then, for all initial conditions x0 and inputs v giving solutions for
fo such that (xt; vt) 2 W8t, a constant K 2 [0;1) exists such that
the simulation error of the optimal estimate fc is bounded as

jSEt(fo; fc)j � L�tkx0 � x0k+KrI 8t

where � = �+ L < 1 and rI =
1

2
kf� � f

�
k1:

Proof: Let �yt+1
:
= yt+1(fc; x0; v)� yt+1(fo; x0; v). Then

�yt+1 = fc(xt; vt)� fo(xt; vt)

= fc(xt; vt)� fc(xt; vt)

+ fc(xt; vt)� fo(xt; vt)

where xt is obtained by iteration of (1) with f = fc, using input v and
starting from initial conditions x0.

Using the same arguments as in the proof of Theorem 1 results in

�yt+1 = (� + at)
T [�yt . . . �yt�n+1]

T + �t (12)

where at is given in (8) for x0t = xt and �t = fc(xt; vt)� fo(xt; vt).
In the proof of Theorem 1, it is also shown that the system �yt+1 =
(�+at)

T [�yt � � � �yt�n+1]
T is uniformly exponentially stable. Then,

in this case, �yt is the solution of a uniformly exponentially stable
linear system corresponding to initial condition x0 � x0 = [y0 �
y0 � � � y�n+1 � y�n+1]

T and input �t = fc(xt; vt) � fo(xt; vt).
Let us write the solution �yt as the sum of the free-evolution part and
the forced part

�yt = �yfreet + �yforcedt :

From Theorem 1, we have that the free-evolution part is bounded as

�yfreet < L�tkx0 � x0k 8x00; t

where � = �+L < 1. On the other hand, the forced part is bounded
as (see, e.g., [13, Lemma 27.4])

�yforcedt � K sup
��0

j�� j 8t

for some K 2 [0;1). From assumption (xt; vt) 2 W 8t and Result
2, it follows that

sup
��0

j�� j = sup
��0

jfc(x� ; v� )� fo(x� ; v� )j

� sup
w2W

jfc(w)� fo(w)j = kfc � fok1:

Moreover, from Result 2, it follows that

kfc � fok1 � rI =
1

2
kf� � f

�
k1:

Then, being j�ytj � j�yfreet j + j�yforcedt j and SEt = �yt, the claim
follows.

Remark 1: Theorem 2 gives sufficient conditions for optimal model
fc to have the SEB property. As it happens when sufficient conditions
are derived, the problem of their conservativeness arises. Indeed, condi-
tion i) is also necessary, as evident from the fact that if fo(w) = �To w is
linear, even in case that an exact linear approximation fa(w) = �To w
is used, its asymptotic stability is necessary for fc to have the SEB
property. As regard to condition ii), the example presented in the next
section shows that it can be actually met even in cases of strong non-
linearities, such as saturation.

Remark 2: Theorem 2 gives guidelines for the choice of the values
of the bounds  and ", additional to the ones given in [9]. As recalled
in Section II, the values of bounds  and " have to be chosen in the
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Fig. 1. Nonlinear mass-spring-damper system.

Fig. 2. Estimation data set (bold line) and validation data set (dashed line).

validated region which can be computed using the validation Result 1;
see, e.g., Fig. 4 in the example section. Theorem 2 suggests to choose,
if possible, a value of  < (1� �)=L in such a region.

IV. EXAMPLE

A set of 6000 data has been generated from the following nonlinear
system:

yt+1 = 1:8yt � 0:82yt�1 + 0:0024 sin(yt�1) + 0:047 tanh(3ut)

representing a discrete-time approximation of a mass-spring-damper
system with linear spring, nonlinear damper and input saturation (see
Fig. 1). Input u is the force acting on the mass and output y is the mass
position.

A uniform i.i.d. random input of amplitude �1 has been used. The
output data of the estimation set have been corrupted by a uniform i.i.d.
random additive noise of amplitude �0:025. The set of data is shown
in Fig. 2. The first 5000 data, called estimation set, have been used
for model identification, the remaining 1000 data, called validation set,
have been used for model testing.

All the models have been identified using as regressor wt =
[yt yt�1 ut]

T .
Linear Output Error (OE) Model: The OE model is

f(w) = �Tw

Fig. 3. � (bold line) and (thin line) sequences.

Fig. 4. Validation regions for model NSM.

where � = [1:8 � 0:81 0:06]T has been estimated by means of the
Matlab Systems Identification Toolbox using the output error estima-
tion method. This model is asymptotically stable.

NSM Model: The NSM model is:

fc(w) = �Tw +
1

2
[f
�
(w) + f�(w)]

where � is the one of the previous OE model.
The values of L and � for which k�tk � L�t 8t are taken as L =

19:8 and � = 0:952. In Fig. 3, the sequences k�tk andL�t are shown.
The functions f

�
(w) and f�(w) have been evaluated as given in

Section II, choosing the following values of  and "t = "; 8t in the
validated region and satisfying the assumption of Theorem 2:  =
0:0024 " = 0:08. Note that (1� �)=L = 0:00244. The validation
regions for model NSM are shown in Fig. 4

Neural Network Models NNnarx and NNnoe: The NNnarx and
NNnoe models have been obtained considering a two-layer neural
network (see, e.g., [2]–[5]) for the regression function:

f(w) =

r

i=1

�i� �T

i w � �i + �:
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TABLE I
ONE-STEP AHEAD PREDICTION AND SIMULATION ERRORS

Fig. 5. Validation set: data (bold line), NSM (thin line), and NNnoe simulation
(dashed line).

Here, �i; �i; � 2 ; �i 2
n are parameters and �(x) = 2=(1 +

e�2x) � 1 is a sigmoidal function. Several NARX and NOE neural
network models with different values of r (from r = 3 to r = 16) have
been trained on the estimation set using the Matlab Neural Networks
Toolbox. Note that NOE neural networks models cannot be directly
estimated using the MATLAB Neural Network Toolbox. Indeed, it is
required to set the neurons connections in order to obtain a suitable
recursive network.

The NARX model with r = 8 showing the best simulation per-
formances, has been taken for model NNnarx. All the NOE identified
models got stuck on (possibly) local minima during the training phase,
providing bad simulation performances. The best result has been ob-
tained by using as starting point the parameters of the NNnarx model.
This NOE model, showing a slight improvement in simulation per-
formances with respect to the NNnarx one, has been taken for model
NNnoe.

In Table I, the root mean square errors obtained by the identified
models on the validation data set are reported. The simulation error is
indicated as RMSES, the one-step ahead prediction error is indicated
asRMSEP. In Fig. 5, a portion of validation data and NSM andNNnoe

models simulation are shown.
It can be noted that the accuracy improvements of the NSM model

over the NNnarx and NNnoe models, though moderate for one-step
ahead prediction, are quite significant in simulation.

V. CONCLUSION

In this note, a first result is derived on the quality of identified
models of nonlinear systems measured by the accuracy in simulating
the system behavior for future inputs not used in the identification.
Models identified by classical methods minimizing the prediction
error, do not necessary give “good” simulation error on future inputs

and even the SEB property is not guaranteed. The NSM approach pro-
posed in [9] is taken, assuming that the nonlinear regression function,
representing the difference between the system to be identified and
a linear approximation, has gradient norm bounded by a constant .
Moreover, the noise sequence is assumed unknown but bounded.

If the chosen linear approximation is asymptotically stable (a neces-
sary condition for the SEB property), a condition on  is given, guaran-
teeing that the simulation error is bounded by a function of the radius
of information rI , so that the identified NSM model fc has the SEB
property. The bounding constants  and ", defining the SM assump-
tions on system and noise, have to be selected in the validated region,
i.e., in such a way that assumptions are consistent with measured data.
Thus, if values in this region exist, satisfying the sufficient condition,
the results derived in note can be used to give guidelines for the choice
of the bounding constants  and ", additional to the ones in [9] and
useful for obtaining models with “low” simulation errors.

The numerical example, representing a mass-spring-damper system
with nonlinear damper and input saturation, demonstrates the effec-
tiveness of the presented approach. Indeed, the NNnarx and NNnoe

models identified in this example have similar one-step ahead errors as
the NSM model. However, the NSM model, satisfying the derived suf-
ficient conditions, displays a simulation error significantly lower (more
than three times) than the simulation errors obtained by the NNNARX

and NNnoe models.
Many important open problems remain, deserving further investiga-

tions, such as giving conditions on input and noise assuring asymptotic
convergence to zero of the radius of information, evaluation of constant
k in Theorem 2, derivation of identification algorithms directly mini-
mizing the simulation error.
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